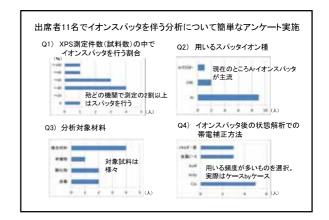
第37回研究会 XPS-WG報告


<出席者 (11名)>

吉川 英樹 (NIMS) 田口 香 (秋田県産業技術センター) 相馬 誠 (ハナリニック電工解析センター) 木村 昌弘 (JX日鉱日石金属㈱) 速水 弘子 (住友金属テクノロジー㈱) 井上 りさよ (アルハック・ファイ㈱) 島政英 (日本電子) 局 映央 (日本電子) 相馬 藤田 塩地 (日立マクセル) 木村 應矢 量之 (東洋紡) 速水 安福 秀幸 (㈱リコー) 井上 高野 みどり (ハナソニック エレクトロニックテ ハイス㈱)

新規テーマ案:「イオンスパッタ後の化学状態分析」について

<討議内容>

- 1. 各機関のイオンスパッタを伴う分析についての現状
- 2. 課題抽出に向けたアンケートについて、質問項目の検討 3.イオンスパッタ後表面の化学状態分析が困難になる原因と対応策、 問題点について

XPSによるイオンスパッタ後の状態解析の現状把握

(アンケート実施予定)

<項目案>

- ■頻度
- ·分析対象材料 (金属、酸化物、有機物、複合材料···等)
- •スパッタイオン源 (Ar, C₆₀, その他)
- イオンスパッタの加速電圧
- 帯雷補償方法
- ■帯電補正方法

(C1s, Ar2p, 金属ピーク, フェルミ端, 帯電補正不要, 帯電補正行わず解析・・・等)

- ■ダメ─ジ低減化方法
- •「深さ方向」の深さ(数nm→角度分解、X線エネルギー変更、 数十~数百nm→depth 数ミクロン→SAICASとかで断面作成、断面分析

スパッタ後の状態解析

⇒試料間で相対比較は出来るが試料本来の状態を知ることは困難

『困難』の原因と現在の対応等

原因		対応策		問題点
電	一様に帯電 部分帯電(面)	帯電緩和	中和銃使用	深さ方向の帯電緩和は困難 試料凹凸状態により困難
	部分帯電(深さ)	帯電補正	C1s,金属ピーク	何を基準にするか
		補正なし	エネルギー差で判断	
			加速電圧下げる	スパッタレート低下
				位置調整
		スパッタ条件	イオン入射角下げる	スパッタレート低下
		変更		位置調整
ダメージ	還元			装置構造上困難な場合有
	分解			有効性不明
		イオン種変更	クラスターイオン	高価
				装置により改造必要
				スパッタレート低下
				材料により有効性異なる
		イオン銃以外	試料冷却	装置により改造必要
		解析	適当な標準試料との	「適当な標準試料」の
			相対比較	入手困難

く参考>

ISO19318

- ・・・実用的な帯電現象の補償方法、帯電量の見積もり方法を例示
- <帯電現象の補償方法>
- 低速電子の照射(フラッド電子銃の利用)
- ■UV光の照射 (フラッドUV光源利用)
- -試料加熱
- ■電気的接触(導電性メッシュ、フォイル、アパーチャー)
- ・低速イオン照射
- <帯電量の見積り方法>
- ・汚染炭化水素由来のピークを使う (C1s=284.6~285.2eV)
- 堆積させたAuのピークを使う(Au4f=83.95eV/83.96eV) 打ち込んだ希ガス元素のピークを使う(Ar2p_{3/2}=240.3~241.9eV)
- 内部ピークを使う (特定の官能基)基板のピークを使う

<参考文献>

- 1. 電子分光法による絶縁物の表面分析と帯電現象 一村 信吾, 表面科学 Vol.24, No.4, pp.207-214, 2003
- 2. Correction of Peak Shift and Classification of Change of X-ray Photoelectron Spectra of Oxides as a Result of Ion Sputtering. S.HASHIMOTO; K.HIROKAWA; Y. FUKUDA; K.SUZUKI; T.OHTSUBO; T.SUZUKI; N.USUSKI; N.GENNAI; S.YOSHIDA; M.KODA; H.SEZAKI; H HORIE; A TANAKA,

Surf. Interface Anal., Vol.18, No.12, pp799-806, 1992

- 3. Differential charging in XPS studies of polymer/metal interfaces. A.J.PERTSIN, YU.M.PASHUNIN, Appl. Surf. Sci., Vol.44, No.3, pp171-178, 1990
- 4. A new charge-correction method in X-ray photoelectron spectroscopy. SKOHIKI TOHMURA KKUSAO
 - J. Electron Spectrosc. Relat. Phenon., Vol.28, No.4, pp229-237, 1983

その他、お勧めの文献がありましたらご連絡下さい。